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Abstract

Health is typically imperfectly measured. How important is this imperfect ob-

servability to evaluate the costs of bad health? We estimate a dynamic, structural

life-cycle model of savings and labor supply with health risk under two assump-

tions on the observability of health. The first one, which is prevalent in much of

the literature, is that health is perfectly observable. The second one is that, while

health is not observable, a battery of noisy measures of health is available to the

researcher. We find that ignoring measurement error in health leads to substan-

tially underestimating both the persistence of health and the time costs of being

unhealthy. Ultimately, measurement error has an effect on the estimated lifetime

costs of bad health—as measured by labor earnings, hours worked, consumption,

and assets—leading to underestimate these by as much as 300%. A key message

of our paper is that estimating the lifetime costs of bad health using structural

economic models requires researchers to worry about measurement error in health.
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1 Introduction

An increasing body of research recognizes the importance of health in shaping eco-

nomic decisions and outcomes.1,2 Special emphasis has been placed in understanding

how health affects labor-supply decisions, savings, retirement, and inequality in con-

sumption, income, and wealth.3 The vast majority of studies, however, treat health as

perfectly observed. In this paper, we ask whether failing to account for measurement

error in health leads structural models to estimate substantially-biased costs of bad

health.

To answer this question, we estimate a structural, dynamic life-cycle model of

savings and labor supply under two assumptions on the observability of health. The

first one is that health is perfectly observable from survey data. The second one is that,

while health is not observable, a battery of noisy measures of health is available to the

researcher.

We adopt a canonical model of labor supply and saving behavior which includes

health- and labor-productivity risk. As in many other papers, health is exogenous

and affects pecuniary resources, the time endowment, and future health. Individuals

choose how much to work, consume and save. The government taxes income, gives

mean-tested transfers, and provides social security. Because bad-health shocks are more

prevalent at old ages, and because there are excellent longitudinal data sets starting at

age fifty, so does our model.

To evaluate whether it is important to explicitly acknowledge that health is measured

with error, we estimate our structural model twice. First, by ignoring the measurement

error, and then by explicitly modeling it. When health is measured with error, we

1A non-exhaustive list of papers is: Bound (1991), Smith Jr (1993), Smith (1999), Wu (2003), French

(2005), De Nardi, French and Jones (2010), French and Jones (2011), Gustman and Steinmeier (2014),

Capatina (2015), Poterba, Venti and Wise (2017), De Nardi, Pashchenko and Porapakkarm (2018), Bueren

(2021), Costa-Dias, Blundell, Britton and French (2021), and Amengual, Bueren and Crego (2021).
2It is now well understood that health not only drives life expectancy, but also has the potential to

affect the productivity of workers, the non-pecuniary costs of work, medical expenditures, and long-term

needs, among others.
3In the reduced-form literature, Poterba et al. (2017), Smith Jr (1993), Smith (1999) and Wu (2003)

examine the nexus between adverse health shocks and wealth accumulation; Bound (1991) and Costa-

Dias et al. (2021) study the labor-supply effects of adverse health conditions. On the structural side, papers

like Gustman and Steinmeier (2014), Capatina (2015), and De Nardi, Pashchenko and Porapakkarm

(2018) have looked at the impact of health shocks on different economic outcomes.
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compute health transitions using self-reported health status. To correct for measurement

error in health, we assume that health follows a non-stationary hidden Markov model

(NSHMM). Estimating the NSHMM for health yields the dynamics of true latent health

and the relationship between observed health measures and true health. Estimating the

structural model under the two assumptions on the observability of health produces

two sets of estimated costs of bad health, as measured by labor earnings, hours worked,

consumption, and assets. We find that ignoring measurement error in health leads to

considerably underestimating the costs of bad health, especially for people who are

already unhealthy at age fifty. More specifically, our exercise suggests that not taking

into account measurement error could lead to underestimating the lifetime costs of bad

health by 50–300%.

Ignoring measurement error in health leads to underestimating the costs of bad

health because it changes two key estimated parameters: the time costs of bad health

and the persistence of health. A lower time cost of bad health translates into a smaller

increase in resources when moving all individuals to the good health state. To see this,

note that lower time costs of bad health mean that individuals have more time to work

and hence can earn more and accumulate more assets when unhealthy. We expect this

channel to be the first-order force behind the higher estimates for the costs of bad health

when taking into account measurement error for the overall population.

Because health is persistent, the costs of bad health are higher for those who are

initially unhealthy. This is true both when taking into account and when ignoring

measurement error in health. However, when ignoring measurement error, we estimate

a lower health persistence. This exacerbates the downward bias in the estimated lifetime

costs of bad health for the initially unhealthy. To see this, note that if health was i.i.d.,

the initially healthy and the initially unhealthy would spend approximately the same

amount of time in the bad health state.

The rest of the paper is organized as follows. Section 2 discusses how our paper

relates and contributes to the existing literature. Section 3 develops our structural

model of labor supply and saving behavior with health risk, which is designed to fit

into the institutional context of the United Kingdom. Section 4 discusses our estimation

strategy and the model fit. Section 5 lists data sources and data restrictions. Section

6 reports our main results, which compare the estimated lifetime costs of bad health

when health is measured with and without error. Section 7 concludes.
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2 Related Literature

Our paper contributes to two strands of the literature. First, we contribute to the

literature that uses life-cycle structural models with health risk to ask a variety of

substantive questions (Bueren, 2021; De Nardi, French and Jones, 2010; French, 2005;

French and Jones, 2011). Most papers in this literature ignore measurement error in

health. Two notable exceptions are French (2005) and Bueren (2021), which partially

address the presence of measurement error in health. Both papers, however, impose

restrictive parametric assumptions on the transition matrices for health. Also, they

ignore measurement error in health when estimating the initial distribution of states,

which includes health. On top of that, identification of the measurement error model for

health in French (2005) is done under unnecessarily restrictive assumptions, and is not

discussed in Bueren (2021). Our contribution to this literature is to estimate a structural

model with health risk, guaranteeing the identification of the dynamics of health and

its measurement system, and taking into account measurement error in each stage of

the estimation procedure. In particular, we show how to estimate the initial distribution

of states and the spousal earnings function taking into account measurement error in

health. Moreover, we do so without imposing restrictive parametric assumptions on

the evolution of health. We also extend results from the literature on identification

and estimation of non-stationary hidden Markov models to secure identification of our

measurement-error model, and to estimate it in a computationally tractable way.

Second, our paper speaks to the literature that examines the impact of health on

different economic outcomes. Contributions to this literature come from both reduced-

form and structural exercises. On the reduced-form side, Poterba, Venti and Wise (2017),

Smith Jr (1993), Smith (1999), and Wu (2003), examine the nexus between adverse health

shocks and wealth accumulation. Some other papers in the reduced-form literature

examine the effects of adverse health conditions on labor supply, such as for example

Bound (1991) and Costa-Dias, Blundell, Britton and French (2021). On the structural

side, Capatina (2015) and De Nardi, Pashchenko and Porapakkarm (2018) estimate

the impact of health in various economics outcomes, Gustman and Steinmeier (2014)

estimate the role of health on retirement behaviour, and Amengual, Bueren and Crego

(2021) estimate the assets costs of bad health using the traditional health measure and a

novel measure proposed by them.
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Our paper is most related to Capatina (2015), De Nardi, Pashchenko and Pora-

pakkarm (2018), and Amengual, Bueren and Crego (2021). Like Capatina and De Nardi,

Pashchenko and Porapakkarm, we look at the costs of bad health in a given outcome

by comparing the average individual in the economy with a counterfactual individ-

ual that is lucky enough to receive always the best possible health shock. We follow

Capatina in focusing on the costs of bad health as measured by earnings, assets, and

participation. Some differences with respect to these papers are worth pointing out.

The most important is that while these two papers ignore measurement error in health,

we document that doing so leads to severely underestimating the costs of bad health as

measured by these outcomes.

In principle, the additional flexibility when modeling health by De Nardi et al. (2018)

makes their estimates more robust to deviations from the first-order Markov assumption

for health than in what we and Capatina use. De Nardi, Pashchenko and Porapakkarm

relax the first-order Markov assumption and add unobserved heterogeneity in health

motivated by the observed state dependence in transition probabilities—the fact that

individuals that have been longer in bad health have a lower probability of exiting that

state. However, a hidden Markov model can generate state dependence in measured

health.4 Hence, while the additional flexibility in modelling health by De Nardi et al.

(2018) makes a step forward with respect to Capatina (2015), it is not clear that their

assumption is preferable to ours. Moreover, there is a sense in which the hidden Markov

assumption is better for a structural model than the higher-order Markov assumption.

If both assumptions can generate the same observable state dependence, the higher-

order Markov assumption is less desirable from a computational standpoint since it

adds an additional state to the structural model for each lag of health that is needed to

predict health tomorrow.

We note that the magnitudes for the estimated costs of bad health between these

studies and ours are not directly comparable for two reasons. First, we cover different

parts of the life-cycle. Second, there are economic forces at play in the frameworks

of the aforementioned studies that are not relevant in our institutional context (e.g.,

medical expenses and private health insurance.) The institutional context in our model

is that of the United Kingdom. The reason why we focus on the United Kingdom

4For instance, hidden Markov models have been used in labor economics to explain the state-

dependence of unemployment. See Shibata (2019).
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rather than in, say, the United States is because this allows us to abstract from unneces-

sary complications in the environment, such as modeling employer-provided health

insurance and out-of-pocket medical expenditures.5

Finally, Amengual, Bueren and Crego (2021), like us, estimate a non-stationary

hidden Markov model for health and calculate the asset costs of bad health, both when

taking into account and when ignoring measurement error. By estimating a hidden

Markov model for health using a battery of many noisy measures, they account for

measurement error when estimating health dynamics. However, they do not estimate

structural preference parameters, and instead take the ones from De Nardi, French and

Jones (2010), which are estimated ignoring measurement error in health. In this paper,

we argue that re-estimating all structural parameters is key in to assess the bias in the

estimated costs of bad health. In particular, we find that the estimated time cost of bad

health increases substantially when we take measurement error into account.

3 Structural Model

In this section, we describe the individual intertemporal optimization problem of core

household members.6 For the sake of comparability with the literature, our model

closely follows French (2005), a canonical model of labor supply and saving behavior

with health risk. Since we are writing a model for the UK, we follow O’Dea (2018) in

modelling institutional aspects that are relevant for our purposes.

3.1 Preferences

In the model, household heads make consumption (Ct), savings (at+1), leisure (Lt), and

labor supply decisions (Nt) in each period to maximize their discounted sum of lifetime

5While the US does not provide universal health care, many European countries, including the UK,

do. In the UK, the National Health System (NHS) provides free treatment at the point of use to the

majority of the UK population—technically speaking, to UK ordinarily residents, which are people living

in the UK lawfully, voluntarily, and for settled purposes. Private health care in the UK in 2015 was used

by less than 11% of the population according to estimates of The Commonwealth Fund, and generally

as a top-up to NHS services. For our purposes, this means that we can avoid modeling private health

insurance and OOP medical expenditures if we focus in an institutional setting like that of the UK.
6See section 5 for a definition.
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expected utility, which is given by

E0

T∑
t=0

βt

[
st(Ht)U(Ct,Lt)+

[
1− st(Ht)

]
b(at+1)

]
.

Conditional on being alive in period t−1, a household head with healthHt stays alive at

time twith probability st(Ht), and derives flow utility from consumption Ct and leisure

Lt. With probability 1−st(Ht), the household head dies and derives utility from leaving

behind a bequest at+1. This utility is captured by the warm-glow bequest motive utility

function b(at+1).

We parametrize the flow utility that the household head derives from consumption

and leisure when alive as:

U(Ct,Lt) =
1

1−γ

(
Cνt L

1−ν
t

)1−γ
,

where ν ∈ [0,1] measures the importance of consumption in the instantaneous utility,

and the parameter γ governs both relative risk aversion and the degree of inter-temporal

substitution of consumption and leisure.

The amount of leisure time that the household head enjoys each period is given by

L−φH1(H= 2)−φP1(N> 0)−N. In this expression, L is the total endowment of hours,

N is the number of hours worked, and φP1(N> 0) is a fixed cost of participation in the

labor force. This term captures the time costs associated to working (such as commuting

or dressing for work) and helps to rationalize that, conditional on working, hours of

work are likely to be large. Finally, the term φH1(H = 2) is the time cost associated to

bad health, and it helps to rationalize that individuals that appear to be unhealthy work

less hours.7 As we will see below, H = 2 will correspond to the bad health state. The

warm-glow bequest motive is parametrized following De Nardi (2004) as:

b(a) = θB
(κB+a)

(1−γ)ν

1−γ
,

where θB is the weight on bequests, and κB governs the curvature of bequests. Note that

if κB > 0, the marginal utility of leaving a positive bequest versus leaving no bequest is

finite. This parameter can also be interpreted as governing the extent to which bequests

are a luxury good.

7The choice of words “appear to be unhealthy” is deliberate. In our benchmark framework, which

presupposes that health is imperfectly measured, health is unobserved by the econometrician.
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3.2 Government and Private Pensions

In this model, the government taxes income, gives transfers, and administers public

pensions, which start paying at the retirement age Ra.

The government taxes the personal income of the household head. Taxes are cap-

tured by the post-tax income function yt(·), which takes as argument the gross income

of the household head. The dependence of this function on t captures the fact that the

tax scheme in the UK changes with age (see O’Dea, 2018, Appendix D.7).

The government also gives transfers trt to households to ensure a minimum level

of consumption:

trt =

max
{
0,Cmin,t−

(
WtNt+ rtat+at+yst

)}
, if t < Ra

max
{
0,Cmin,t−

(
WtNt+ rtat+at+ys(t,Ht)+pbbt+privbent

)}
, if t> Ra

,

where yst denotes spousal income, and pbbt and privbent denote public and private

pension payments, respectively. In order to capture the fact that retirees in the UK face

different means-tested programs than non-retirees, we let the consumption floor vary

with age.8 In particular, Cmin,t changes at Ra according to:

Cmin,t =

C
y
min, if t < Ra

Comin, if t> Ra
.

Public pension payments are a function of average lifetime earnings at Ra:

pbbt =

0, if t < Ra

g(aeRa), if t> Ra

.

In an analogous fashion, private pension payments are also a function of average

lifetime earnings at Ra:

privbent =

0, if t < Ra

privben(aeRa), if t> Ra

.

Average lifetime earnings evolve according to:

aet+1 =
WtNt+(12+ t− 1)aet

12+ t
.

Note that this specification assumes that individuals start working at age 26 (hence the

number 12 in the expression, since 12 bi-annual periods have passed since labor market

entry when the model starts at age 50.)
8See Appendix D.7 in O’Dea (2018) for a discussion of Pension Credit in the UK.
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3.3 Wages, Assets, and Spousal Income

At each time period t, log wages are given by:

logWt(Ht, t) = a0+a1t+a2t
2+aH1(Ht = 1)+ut.

Hence, wages have a deterministic age component captured by a0+a1t+a2t2 that is

common to all individuals, and an individual stochastic component captured by ut.

On top of that, the term aH1(H = 1) allows for the possibility of healthy individuals

receiving higher wages. We assume that the stochastic component of wages follows an

autoregressive process:

ut = ρut−1+ ξt, u0 = ξ0, ξt ∼

N(0,σ2ξ,0) if t= 0

N(0,σ2ξ,t) if t> 1
.

Since we are modelling households (as opposed to single individuals), it is important

to include spousal income as part of the total amount of resources. We capture post-tax

spousal income in a reduced form way—that is, we do not explicitly model the labor

supply decision of the spouse. We model spousal income as in French and Jones (2011).

That is, in our model, post-tax spousal income is given by:

yst =

ys(t,H), if t6 Ra+ 1,

0, if t > Ra+ 1,

where the choice of setting spousal income to zero starting from the period 68–69

(= Ra + 2) is justified by the fact that, in the data, approximately 85% of individuals

older than 68 have spouses with zero non-pension income .

Individuals can save on a safe asset at with rate of return r. Assets evolve according

to:

ct+at+1 = yt(rtat+wtNt)+ys(t,H)+ trt+at, if t < Ra,

ct+at+1 = yt(rtat+wtNt+privbent+pbbt)+ys(t,H)+ trt+at, if t> Ra.

Moreover, individuals face a no-borrowing constraint:

at+1 > 0.
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3.4 Health

Since health affects survival probabilities, the total amount of available hours, and

wages, it is important to specify how health evolves. In this paper, we assume that

health takes two values when alive (Ht ∈ {1,2}) and specify the “dead” state as the

third health category (Ht = 3). Moreover, we assume that health evolves according to a

non-stationary Markov process:

P(Ht+1 = i|Ht = j) = Kt(j, i),

for i, j = 1,2,3, where Kt denotes the transition matrix for health at age t. The non-

stationarity of health transitions is to account for the fact that health declines with age,

as according to most measures of health and consistently with the empirical literature.

Survival probabilities st(Ht) can be obtained from transition matrices K as:

st(Ht) = 1−Kt(Ht,3),

for Ht = 1,2.

3.5 Recursive Formulation and Model Solution

The solution of this model is a sequence of value functions
{
Vt
}T
t=0

and policy functions

for assets, consumption, hours worked, and leisure
{
ga,gc,gN,gL

}T
t=0

that depend on

the state vector:

Xt = (Ht,at,aet,ηt).

At each t, the value function Vt solves:

Vt(H,a,ae,η) = max
a ′,N

u
(
c,L−φP1(N> 0)−N−φH1(H= Bad)

)
+
(
1− s(H,t)

)
b(a ′)+βs(H,t)EVt+1(·,a ′,ae, ·)

s.t c+a ′ = y(ra+wN)+ys(t,H)+ trt+a, if t < Ra

c+a ′ = y(ra+wN+privben+pbb)+ys(t,H)+ trt+a, if t> Ra,

a ′ > 0,

ae ′ =
wN+(12+ t− 1)ae

12+ t
.

The policy functions are the argmax of the RHS of this expression at each t. As usual, no

analytic expression exists for the solution of this problem. Hence, value functions and

policy functions have to be found numerically. We give more details on the numerical

procedure used to solve this problem in Appendix D.
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4 Estimation

We follow the large literature that estimates structural life-cycle models using a two-

step procedure to estimate the parameters of our model (see, for example, De Nardi,

French and Jones, 2010; French, 2005; Gourinchas and Parker, 2002). In the first step, we

estimate some parameters outside the model and set some others to values taken from

the literature. In the second step, we use an indirect-inference procedure to estimate

the remaining parameters.

Because we have to estimate the model both taking into account measurement error

and ignoring it in order to perform the comparison in counterfactuals, we explain how

we conduct the estimation in each case.

4.1 Parameters Estimated or Calibrated Outside the Model

4.1.1 Process for Health and Measurement-Error Model

The stochastic process for health is the non-stationary Markov model described in the

model section. The estimation of this process differs between the case in which we

account for measurement error in health and the case in which we ignore it.

When we ignore measurement error, we follow the literature and assume that the

observable health state can be obtained from collapsing self-reported health status into

two categories. Identification and estimation of the stochastic process for health is

straightforward when we assume that health is observable. In this case, the transition

matrix for health and mortality can be identified and estimated using the empirical

transition probabilities from the data between health states.

Assuming that health can only be measured with error complicates identification

and estimation of the health process, because now transition probabilities are not di-

rectly observable. In order to deal with this complication, we adopt methods developed

by García-Vázquez (2021) to identify non-stationary hidden Markov models. We adapt

slightly those methods to allow for attrition due to mortality. See Appendix A for a

formal identification argument.

Importantly, we place no parametric restrictions on the transition probabilities for

health, both when we account for measurement error and when we ignore it. An

alternative to doing this is to impose such parametric restrictions, by assuming for

example that they are a logit as a function of age. This is precisely what Amengual,

10



Bueren and Crego (2021) do. While this approach can improve efficiency if the para-

metric restrictions hold for the true data generating process, it can lead to bias if this

is not the case. If we followed this approach, comparisons between counterfactuals

when ignoring and when taking into account measurement error could come from

measurement error itself, or from misspecification of the transition probabilities when

estimating them using parametric assumptions. By leaving transition probabilities

unrestricted in estimation, our procedure is robust to these kind of concerns.

Identification and estimation of the measurement-error model require three noisy

measures. In this paper, we choose the following as noisy measures of health: self-

reported pain, the total number of complications with ADLs and IADLs, and the

number of mobility conditions.

In order to estimate the stochastic process for health, we also need to estimate the

relationship between the health measures and true health status, which is captured by

the emission matrices. More precisely, let the distribution of the noisy measure for health

m, given that the true health status is c, be given by the vector pmc . The emission matrix

for measure m is given by:

Pm =
(
pm1 , pm2

)
.

Moreover, the emission matrices are also important because we use them to generate

the noisy measure of health inside the model, which we need in order to target the

relevant profiles by measured health. Tables 1–3 report the estimates for the different

emission matrices.9

9Since the number of ADLs and IADLs can take many values we top-code this measure at 4. For the

same reason, we top-code the number of mobility conditions at 8.
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Table 1: Emission matrix for number of mobility conditions.

Mobility Conditions Good Health Bad Health

0 0.5200 0.0014

1 0.2143 0.0285

2 0.1385 0.0755

3 0.0738 0.1226

4 0.0350 0.1408

5 0.0155 0.1446

6 0.0030 0.1403

7 0.0003 0.1332

8+ 1.3259E-06 0.2132
Table Notes. Probabilities are rounded up to four decimals.

Table 2: Emission matrix for pain

Good Health Bad Health

No Pain 0.7749 0.1863

Mild Pain 0.10039 0.1259

Moderate Pain 0.1051 0.4379

Severe Pain 0.0196 0.2499
Table Notes. Probabilities are rounded up to four decimals.

Table 3: Emission matrix number of limitations with ADL’s and IADL’s

Limitiations (ADL’s + IADL’s) Good Health Bad Health

0 0.8692 0.1879

1 0.0986 0.2066

2 0.0246 0.1722

3 0.00583 0.1219

4+ 0.0019 0.3114
Table Notes. Probabilities are rounded up to four decimals.

In Figure 1, we present the comparison between transition probabilities for health when

health is measured with and without error. The left panel depicts the probability of

staying in good health for the different age groups, and the right panel does the same
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for those in bad health. As it is evident from these graphs, the measured persistence of

health is higher when measurement error is accounted for.

Figure 1: Persistence of good and bad health accounting for and ignoring ME.

4.1.2 Spousal Income

In the model, spousal income is a deterministic function of the health status and the

age of the household head. Hence, the spousal income function evaluated at age t and

health Ht is simply the conditional mean of spousal income given that age is t and

health status is Ht. That is:

ys(H,t) =E

[
ysi,t|Ht

]
.

Since non-pension spousal income is zero for most households with a retired household

head, and since we include pensions of the spouse in the private and public pension

functions, we assume that spousal income is zero for t > Ra+ 1.

When we take into account measurement error in health, average spousal income

given health status and age can still be identified from the mean spousal income by age

given the noisy measures of health and the distribution of the noisy measures given

true health. See Appendix B.2 for a formal identification proof. See also Appendix B.2

for a detailed explanation of the minimum distance procedure used to estimate the

spousal income function when health is measured with error.

The results of estimating the spousal income function accounting for measurement

error and ignoring it can be seen in Figure 2. From this figure, it is clear that the

spousal income function that we estimate taking into account measurement error is

remarkably similar to the one that we estimate when we ignore it. Hence, we do not

expect differences in counterfactuals when accounting and ignoring measurement error
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to come from differences in spousal income. The similarity of the two functions is more

remarkable once we remember that the measure of "observable" health is not included

as a noisy measure of health when taking into account measurement error. Hence, the

previous figure serves as (admittedly informal and partial) validation of our choice for

noisy measures of health.

Figure 2: Spousal income function.

4.1.3 Wage-shock Parameters

Table 4 reports the estimated parameter values for the wage-shock process for two

different health measures. The first measure (Health, with DLs) is a dummy variable for

good health that takes the value 1 if the individual presents no limitations with ADLs

or IADLs. This is the health measure that we use when estimating the model that takes

into account measurement in health. The second measure (Health, with SRHS) is also a

dummy variable for good health, but that takes the value 1 if the individual claims to

be in “excellent,” “very good” or “good” health in questions about self-reported health

status. This is the health measure that we use when we purposely ignore measurement

error in health. For specific details on the estimation procedure, see Appendix B.3.

Notice that the estimated parameters reported in Table 4 are remarkably similar.

The main reason for this is that there is a very high correlation between reporting to

be in “excellent,” “very good” or “good” health and not experiencing any limitations

with daily-living activities (DLs). Since all other variables in regression equation (7) are
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Table 4: Minimum Distance estimates of wage-shock parameters.

Parameter Health, with DLs Health, with SRHS

ρ 0.8519 0.8589

(0.19) (0.19)

σ2η 0.1029 0.0962

(0.07) (0.07)

σ2ξ,1 0.1604 0.1690

(0.09) (0.09)

σ2ξ,t 0.0614 0.0602

(0.04) (0.04)

σ2m 0.1683 0.1696

(0.03) (0.02)

Table Notes. Standard errors, calculated using 100 bootstrap samples, are reported in parenthesis.

the same, the estimated residuals will also be very similar and, hence, the estimated

parameters under the two health classifications very close to each other.

4.1.4 Initial Distribution of States

In order to initialize the model, we need the initial distribution of states. When we

ignore measurement error, we sample 5,000 individuals with replacement from the

joint distribution of states of assets, average earnings, and health. For each of these

individuals, we generate their initial wage shock according to the estimated initial

distribution of wage shocks. When measurement error is taken into account, we proceed

as follows. First, we initialize the initial distribution by simulating initial health status

for 5,000 individuals according to the estimated initial probability distribution of health.

Then, we simulate average earnings and assets for those individuals sampling from

the joint distribution of assets and average earnings given their health status, which

we estimate. Then, we simulate the wage shock independently just as before. See

Appendix D for details on the identification and estimation of the initial distribution of

assets and average earnings when health is measured with error.
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4.1.5 Pension Parameters

Similar to O’Dea (2018), we estimate parametrically the parameters that relate public-

and private pension benefits with average earnings by running the following two OLS

regressions:

pbbi,65 = ss1aei,64+ ss2ae
2
i,64+ εi, for aei,64 6 âess, (1)

privbeni,65 = pp0+pp1aei,64+pp2ae
2
i,64+ ξi, (2)

where pbbi,65 denotes the public pension benefits at the household level of individual

i at age 65, aei,64 are average earnings of the individual at age 64, âess(= 75,000) is

the threshold at which the quadratic relationship between public pension benefits

and average earnings starts to decrease, privbeni,65 are private pension benefits at the

household level, and εi and ξi are white noise.

The estimated parameters are reported in Table 5.

Table 5: Pension parameters

Parameter Value S.E.

ss1 0.6518 0.0006

ss2 −3.56E-06 1.31E-08

pp0 5,980.80 591.35

pp1 0.3426 0.0266

pp2 5.23E-07 2.45E-07

4.1.6 Parameters Fixed Outside the Model

We fix several parameters outside the model. The curvature parameter for bequests κB

is set to 650,000 pounds following O’Dea (2018). The total endowment of hours is fixed

at 8,760 bi-annual hours, corresponding to 12 daily hours. We set the interest rate on

non-housing wealth at 3.23%. This is consistent with the annual rate of 1.6% used by

O’Dea (2018). These parameters are displayed in Table 6.
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Table 6: Parameters taken from the literature

Parameter Value Source

κB: curvature of bequests 650,000 O’Dea (2018)

L: total endowment of bi-annual hours 8,760 12 daily hours

r: interest rate non-housing wealth 0.0323 O’Dea (2018)

We also set outside the model the parameters of the tax function. Since we are

modeling the UK, we follow O’Dea (2018) and model individual income taxes as:

Income taxes(ti,t) =


0, if ti6 κt1

0.2(ti−κt1), if κt1 < ti6 κ
t
2

0.2(κt2−κ
t
1)+ 0.4(ti−κ

t
2), if κt2 < ti

,

where ti denotes taxable income, which consists of labor earnings, asset income, social

security payments and private pension payments, where the last two only pay starting

at retirement age.

Table 7 lists the income tax thresholds. Notice that these are just twice as large

as O’Dea (2018)’s thresholds to account for the bi-annual frequency of our model.

Discrepancies in age with O’Dea are due to the bi-annual nature of our model.

Table 7: Income Tax Thresholds

Age

Parameter < 64 64–73 > 74

κ1 16,210 21,000 21,200

κ2 84,940 89,740 89,940

4.2 Indirect Inference

In the second step, we estimate preference parameters (β,γ,ν,φP,θB,κB,φH), con-

sumption floors (Cymin,C
o
min), and the parameters of the deterministic wage profile

(a0,a1,a2,aH) using indirect inference (Gourieroux et al., 1993; Smith Jr, 1993). Indirect

inference proceeds by minimizing the distance between a vector of target statistics cal-

culated in the data and their model counterparts, which are calculated using simulation.
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To be more precise, let θ = (β,γ,ν,φP,θB,κB,φH,C
y
min,C

o
min,a0,a1,a2,aH) be the vector

of parameters to be estimated. We estimate our second-stage parameters by solving:

θ̂≡ argmin
θ

(ψ(θ)−ψn)
′Wn(ψ(θ)−ψn)

′,

where ψn is the vector of targets in the data, ψ(θ) is the vector of simulated targets, and

Wn is a positive-definite weighting matrix. See Appendix F for more details on the

indirect inference estimation procedure used here.

Note that the parameters that we are estimating in the second stage include the

deterministic wage profile parameters. In principle, one could wonder why we need to

include them in the second stage estimation, as opposed to calculate them directly from

the data. The reason for that is because participation is endogenous in our model, and

hence wage profiles estimated directly from the data will be subject to selection bias.

It is worth mentioning that the literature has proposed other ways of dealing with

this selection problem. Notably, French (2005) proposes an iterative procedure that

reaches convergence when the biased estimates for the deterministic wage profiles in

simulated data are identical to the biased wage profiles estimated in the actual data.

The problem with this procedure is that it is not guaranteed to converge (see footnote

19 in French, 2005). This lack of convergence turned out to be a problem for us in the

implementation of this procedure. Nevertheless, targeting the wage profiles estimated

in the data is conceptually similar—the distinction is essentially a "soft" matching of

the profiles versus an strict matching as in the French procedure—and it allows us to

use standard asymptotic Indirect Inference results for the wage profiles estimates.

The targets that we are seeking to match are assets, hours worked, and participation

(all by measured health status), and the coefficients of a fixed-effect regression of log-

wages on a quadratic polynomial in age and a dummy for being classified as "healthy."

At this point, it is worth clarifying what we mean by "measured health status." For

the sake of calculating targets, both when we take into account measurement error and

when we purposefully ignore it, we measure health status as a binary variable. When

we ignore measurement error, we follow most of the literature and measure health

status in the data as the binary variable resulting from collapsing self-reported health

status. When calculating targets involving health in the simulated data, we use the true

health status of each simulated individual.

When we take into account measurement error, we use as our binary health indicator

a transformation of the number of IADL’s and ADL’s. More precisely, we classify as
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healthy individuals that have no problems with ADL’s or IADL’s, and as unhealthy

individuals that exhibit problems with some ADL or IADL. The targets that we calculate

in the data use that classification. Moreover, because we want the targets in the

simulated data to be comparable to the targets in the actual data, we generate a dummy

variable in the simulated data that tells us whether the individual suffers from problems

with some IADL or ADL. In order to generate the binary ADL-IADL measure for each

individual in the simulated data, we use the distribution of this dummy variable given

true health status, which we can estimate consistently (see section 4.1.1).

Table 8 contains the parameters estimated by indirect inference, both when we take

into account measurement error and when we ignore it.

Table 8: Parameters estimated by Indirect Inference.

Parameter Taking into account ME Ignoring ME

β: bi-annual discount factor 0.76 0.80

γ: CRRA coefficient 3.93 3.71

ν: consumption weight in utility function 0.48 0.46

φP: fixed cost of participation 1097.71 1076.12

θB: weight on bequest 0.066 0.076

φH: time cost of bad health 1851.190 875.05

C
y
min: consumption floor when young 6927.27 4573.36

Comin: consumption floor when old 13775.78 12408.93

a0: constant term of wage profile 2.2065 1.92

a1: linear age-term of wage profile 0.005 0.0118

a2: quadratic age-term of wage profile −0.005 −0.005

aH: health coefficient of wage profile 0.0224 0.0256

Table Notes. Parameters φ and Cmin should be interpreted in terms of bi-annual hours and bi-annual

GBP, respectively.

We now briefly discuss identification. The bi-annual discount factor, β, is identified by

the average growth of assets when individuals are young. The coefficient of relative

risk aversion, γ, is identified by differences in assets between individuals in good

and bad health. Recall that the coefficient of relative risk aversion equals the inverse

of the inter-temporal elasticity of substitution of consumption. With a higher γ, the

inter-temporal elasticity of substitution is lower and, hence, individuals are more eager
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to equalize consumption across periods with different health status. Hence, with a

higher γ, individuals are willing to deplete assets more quickly in bad health and

accumulate assets quicker in good health. Hence, γ is identified by the difference in

assets in good and bad health. The weight of consumption in the utility function, ν, is

identified by the level of hours that individuals work. This can be seen by noting that

(1−ν) is the weight of leisure in instantaneous utility. The fixed cost of participation,

ΦP, is identified by the level of participation. The weight on bequests, θB, is identified

by the level of assets that individuals have at the end of the life cycle. The time cost

of bad health, ΦH, is identified by differences in the level of participation and hours

between those in good and bad health. The difference in consumption floors, Cymin and

Comin, is identified by variation in assets at retirement age. If the consumption floor for

the elderly is more generous than the consumption floor for the young, assets should

decline more around retirement age. Finally, the parameters pertaining to the wage

process, (a0,a1,a2,aH), are estimated in the data and the internal calibration procedure

tries to match them correcting for the selection of workers into the labor market that

the model generates. In essence, the identification argument for these parameters is

similar to that in French (2005).

4.3 Assets, Participation, Hours, and Wage Profiles

Ideally, we would like to observe assets, labor-force participation, hours worked, wages,

and health status for individuals in our cohort (those born between 1950 and 1957)

since they enter the labor-market born until they die. This would allow us to construct

profiles for the variables of interest spanning the relevant part of the life cycle. ELSA,

however, starts surveying individuals at age 50 and is still today a relatively short-lived

panel—it follows individuals for a maximum of eighteen years. This means that in the

best case scenario we would be able to observe a large number of individuals from age

50 to age 68. In practice, however, there are not many such individuals, and many of

the individuals we observe are not consistently followed throughout due to attrition.10

Given the data limitations that ELSA presents, the best we can do is to pool individ-

uals from different birth cohorts and assume that differences in profiles across cohorts

are driven by cohort effects, but not by different treatment of health and age attributes.

10Indeed, many researchers have pointed to the high attrition rates observed in ELSA.
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This allows us to exploit much of the information contained in ELSA and thus construct

profiles that range from ages 50–51 to 86–87.11

To construct profiles for non-housing wealth, hours worked, and labor-force partici-

pation by health status, we use individuals born between 1916 and 1957. To this purpose,

we classify individuals in 19 two-year age groups (from ages 50–51 to 86–87), 4 cohort

groups (those born before 1935, those born in between 1935–1943, those born in between

1943–1950, and those born after 1950), and 2 health groups (healthy and unhealthy).

Since we estimate the model with and without taking into account measurement error,

we use two binary indicators of health; one that relies on self-reported health status

(SRHS), another that uses the number of limitations with ADLs and IADLs (DL). For

each targeted variable y ∈ {non-housing wealth, hours worked, labor-force participation}

and health indicator Healthm, where m ∈ {SRHS, DL}, we run the OLS regression

yi,w = γy,m0 +ηy,ma +ηy,mc +γy,ma
(
aiw× 1{Healthm

i =Good}

)
+uy,mi,w , (3)

where i indexes individuals, w indexes waves, m indexes the health indicator used in

the regression, ηa are age-group fixed effects, ηc are cohort fixed effects, a is the age

group, and ui,w is white noise.

The implicit assumption behind this estimation procedure is that differences in y

profiles across individuals of different cohorts are solely due to cohort effects. In other

words, health and age are attributes that do not drive differences in y profiles across

cohorts. In terms of economics, this amounts to saying that individuals of different

cohorts may have faced different labor- and asset-market circumstances, but that these

markets did not discriminate between them in terms of health and age.

Estimation of equation (3) for each (y,m)-pair provides us with estimates{
γ̂
y,m
0 , {η̂y,ma , γ̂y,ma }19a=1, {η̂

y,m
c }4c=1

}
.

With these estimates, we can generate profiles by health status for each variable y and

health indicator m for individuals in the cohort 1950–1957 according to:

y
good health(m)
a = γ̂y,m0 + η̂y,ma + η̂y,mc=4 + γ̂

y,m
a a, ∀a ∈ {1, . . . ,19},

y
bad health(m)
a = γ̂y,m0 + η̂y,ma + η̂y,mc=4, ∀a ∈ {1, . . . ,19},

11The choice of age 87 as an upper threshold is determined by inspection of ELSA data. There are not

many individuals which are observed above this age. Moreover, given that life expectancy in the UK

was 81.26 years for 2018 (as estimated by the World Bank), 87 is an age that most individuals will never

reach, and an age that, for those who are able to reach it, is associated with a high probability of death.
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where good health(m) is used to indicate that health was determined to be good based

on variable Healthm. Similarly for bad health.

The vectors

ygood health(m) =
(
y

good health(m)
1 , . . . ,y

good health(m)
19

)
and

ybad health(m) =
(
y

bad health(m)
1 , . . . ,y

bad health(m)
19

)
give the profiles of y ∈ {non-housing wealth, hours worked, labor-force participation}

for individuals in good and bad health, respectively, for a given health indicator.

To estimate wage profiles, we use individuals born between 1940 and 1970, who

are younger than 77 years of age, and for whom we observe non-missing wages

for at least two years. The restriction on wages is necessary because the estimation

procedure exploits the time-series dimension of the data. The restrictions on individuals’

birth years and the upper threshold for age respond to technical reasons and data

limitations.12

We assume that the data generating process for wages is given by:

log
(
W̃data
it

)
= ãm0 + ãm1 t+ ã

m
2 t

2+ ãmH1{Healthm
it=Good}+ η̃

m
i + νmit ,︸︷︷︸

= umit+m
m
it

(4)

where W̃data
it is individual i’s hourly wage at age t (measured with error), m indexes

the health indicator used in the regression, ã0 is a constant term, ã1 is the coefficient

of age, ã2 is the coefficient of age squared, ãH is the coefficient of good health, η̃i is

the individual fixed effect, and νit is the error term. The error term νit is the sum of

the stochastic component of wages, uit, and serially-uncorrelated measurement error,

mit ∼ N(0,σ2m).

12We consider individuals born approximately 10 years before and after the individuals in our cohort

(1950–1957) to cover a larger age span (50–77 vs. 50–68) and also to increase the precision of our estimates.

As indicated by French (2005), using data on individuals older than the individuals of our sample helps

to overcome some of the end-point problems associated with polynomial smoothing. Two reasons lead

us to focus on individuals younger than 77 years of age. First, because our structural model is bi-annual,

we have to respect a two-year age group classification (i.e., 50–51, 52–53,. . ., 76–77). In this classification,

77 is one of the natural end points. Other end points could be 79, 81, etc. However, given the small

number of individuals with non-missing wages for at least two years starting at ages 78–79, we find age

77 to be an appropriate upper threshold for age.
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We estimate equation (4) using the within estimator, and note that the estimated

parameters for the earnings process for a given health indicator, (̂̃a0, ̂̃a1, ̂̃a2, ̂̃aH), do

generally differ from the true ones, (a0,a1,a2,aH), due to the selection bias we encounter

in the data—that is, we only observe wages for individuals who are currently working,

but not the potential wages for all individuals in the labor force.13 We deal with the

selection problem for wages using the estimation procedure described in section 4.2.

4.4 Model Fit

The fit of the model can be assessed by looking at Figure 3. This figure displays the

fit of the model for participation, hours worked, and assets when taking into account

measurement error (left panels) and when ignoring it (right panels).

As we can see, the ability of the model to fit the data is similar when we take into

account measurement error and when we ignore it. At the current parameter estimates,

the model misses the level of the profiles, but roughly captures the trends. Looking at

the graphs for participation and hours, it becomes clear that the model has a hard time

capturing the smooth decline in hours and participation around retirement age. This is

likely due to the way in which we model social security, which becomes available for all

individuals at age Ra and then pays independently of earnings and hours worked. More

precisely, given our parameter estimates, the model predicts a much steeper decline in

hours and participation around retirement age than the one observed in the data. Also,

notice that the model that takes into account measurement error requires a time cost

of bad health that is much larger than when we purposely ignore measurement error.

The time costs of bad health is a key parameter for estimating the earnings costs of bad

health and, thus, ignoring measurement error in health will likely lead to underestimate

significantly the earnings costs of bad health.

Table 9 reports the biased estimates for the wage profile parameters in ELSA and in

the simulated data, both taking into account and ignoring measurement error in health.

13These include individuals who could not find and a job, and individuals who found a job but

decided to turn down job offers.
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Figure 3: Model fit taking into account ME (left) and ignoring ME (right).

Figure Notes. Participation is in scale 0–1, hours of work are bi-annual, and assets are expressed in GBP.

Table 9: Fit estimated wage profiles

Parameter Accounting for ME Ignoring ME

Data Model Data Model

a0 2.09 2.24 2.1 1.94

a1 0.058 0.003 0.06 0.013

a2 -0.02 -0.004 -0.002 -0.005

aH 0.024 0.002 0.009 0.013
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5 Data

We use the English Longitudinal Study of Ageing (ELSA) for the time period 2002–2019.

ELSA collects bi-annual survey data that is representative of the English population

living in private households and which is aged 50 and over. In addition to these

individuals, referred to as core members, ELSA also surveys their cohabiting partners in

order to understand the circumstances of these individuals during the ageing process.14

In order to maintain the representativeness of the data, we restrict attention to ELSA

core members. ELSA’s multidisciplinary coverage allows us to obtain the data necessary

for our study. In particular, we can access a wide array of demographics, labor-market

indicators, and health measures. Although we do not follow partners of core members,

ELSA provides income information on these individuals for as long as they are in a

formal relationship (either marriage or cohabiting) with core members. This information

is essential to construct household-level variables of assets and pension income, as well

as spousal income measures. Because we model the behavior of the core member of

a household, we use labor supply, income- and health variables for this person, and

household-level data for assets and pension benefits.

Since ELSA surveys core members starting at age 50, we need retrospective infor-

mation on employment and earnings in order to construct labor-market and earnings

histories prior to the ELSA survey period. This information is essential to compute

average earnings—one of the state variables in our model—and also to estimate pension

parameters outside the model. Ideally, we would like to have access to administrative

data on National Insurance Contributions (NICs) as this would allow us to obtain

reliable estimates of average earnings at different ages. Access to Social Security data

from the UK is, however, restricted to researchers from UK academic institutions or

government departments. For us, this makes accessing NICs data an impossible task. A

potential go-around could be to exploit the information contained in ELSA Life History

Interview, which enables construction of employment spells and earnings histories

since an individual entered the job market.15 This strategy is, however, not very effec-

tive in practice. Imputed average earnings do not exhibit the relationship with pension
14ELSA core members are individuals who fitted the age eligibility criteria, participated in the sample-

origin Health Survey for England (HSE), and participated in ELSA’s first wave if invited to do so. Core

members remained eligible over the waves as long as they did not die or move outside of Great Britain.
15The ELSA Life History Interview was conducted jointly with wave-3 interviews with the objective

of obtaining retrospective information on individuals in a variety of areas, including fertility, housing
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benefits that many other researchers have documented using UK data, including O’Dea

(2018). This points to a very noisy imputation procedure resulting from the many

caveats that the data exhibit.16 For these reasons, we decided to supplement data from

ELSA with data from the simulated model of O’Dea (2018), which provides a good fit

for the earnings profiles obtained from UK Social Security data for the cohort he studies.

The implicit assumption that we make is, therefore, that our cohort (those born in

between 1950–1957) is similar to his (those born in between 1935–1950). See Appendix

C for a detailed description of the imputation procedure for average earnings.

To estimate the parameters that relate (public and private) pension payments with

average earnings, we also use the data simulated by O’Dea (2018). The reason for this

is, once again, twofold. First, the lack of access to administrative data on NICs. Second,

the imputation procedure for average earnings that relies on data from the ELSA Life

History Interview turns out to be very noisy, as indicated by the weak association

between pension benefits and average earnings.

When estimating wage profiles and wage-shock parameters, we use individuals

born between 1940 and 1970, who are younger than 77 years of age, and for whom we

observe non-missing wages for at least two years. We drop observations for which we

have missing wages, which results in a total of 16,880 person-wave observations for log

wages, ages, and health dummies. Wages are computed as annual earnings divided by

annual hours.

To estimate spousal income we use individuals born between 1942 and 1965, who are

younger than 68 years of age, and for whom we observe spousal income and mobility

conditions.17 We define spousal income as the spouse’s labor income, annuity income,

and state benefit income, which includes incapacity benefits, disability allowances,

mobility, jobs and earnings, health, etc. Approximately 80% of individuals in ELSA wave 3 consented to

participate in this complimentary survey.
16Some of the caveats the researcher has to deal with when working with the ELSA Life History

Interview is that individuals only report “start” and “end” dates for each job, as well as their initial

salary at the time of starting the job which is, in many cases, reported in pre-tax terms. This forces the

researcher to make assumptions about the evolution of salaries during employment spells, to deal with

the conversion of old English money to new English money, and to make simplifying assumptions on

the complexity of the UK tax system.
17We focus on individuals younger than 68 years of age and assume, consistent with the structural

model, that spousal income is zero for older ages.
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war pensions, and the like. Dropping observations with missing values, this results in

34,152 person-wave observations for spousal income and health dummies.

We estimate profiles for non-housing wealth, hours worked, and labor-force par-

ticipation by health status in the sample of individuals born between 1916 and 1957.

Discarding observations with missing values, this results in a total of 48,578 person-

wave observation for non-housing wealth, 49,406 person-wave observations for hours

worked, and 49,346 person-wave observations for labor-force participation.

To estimate jointly the stochastic process for health and the measurement error

model, we use data on adverse mobility conditions, limitations with ADL’s and IADL’s,

and self-reported pain from the IFS derived variables. When ignoring measurement

error, our measure of health is self-reported health status, which we take directly from

the corresponding ELSA question.18

Since observing mortality is key for the estimation of the stochastic process for

health, both when we take into account measurement error and when we ignore it, we

restrict our attention to individuals that give permission to link their Social Security

mortality record with ELSA. Since we only observe this measure of mortality for waves

1–5, we only use these waves when estimating the stochastic process for health. After

applying these restrictions, discarding missing data, and restricting attention to ages

50–87, we end up with 45,099 and 38,944 individual-age group observations to estimate

the stochastic process for health when taking into account and ignoring measurement

error respectively.

6 The Lifetime Costs of Bad Health

In this section we report the results of several different health-related counterfactuals.

More specifically, we study the costs of bad health in a battery of outcomes—some of

these are pecuniary costs, such as foregone earnings, and others are non-pecuniary,

such as the number of hours individuals do not work due to bad health.

18In order to construct the measure of observable health, we use for waves 1, 2, 4, and 5 a question

in which the respondent is asked to describe her health as "excellent," "very good," "good," "fair" or

"poor". Since this question is not available in wave 3, for this wave we use another question in which

respondents are asked to rate their health as "very good," "good," "fair," "bad" or "very bad". In both

cases, we collapse the three categories that correspond to the most favorable assessment of health as

"Good Health" and the two worse as "Bad Health".
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We follow De Nardi, Pashchenko and Porapakkarm (2018) in calculating the costs of

bad health as measured by many outcomes. The exercise proceeds in three steps. First,

we simulate the model imposing that all individuals are always in good health. From

these simulations, we can obtain individuals histories for earnings, hours worked, con-

sumption, and assets. Then, we simulate the model letting individuals’ health evolve

according to the transition matrix estimated in the data. Again, these simulations

provide us with individual histories for the same objects. Finally, to find the difference

in counterfactuals, we find the differences between the two scenarios in mean annual

earnings before age 64, mean annual hours worked before age 64, mean annual con-

sumption, and mean annual assets. These are the objects reported in Table 10. Notice

that this table has three columns: one for when we take into account measurement error,

one for when we purposely ignore it, and the difference between the two (expressed in

percentage).

Table 10: Pecuniary Lifetime Costs of Bad Health (all individuals)

Outcome Taking into account ME Ignoring ME Difference (%)

Earnings 971.86 456.42 112.93%

Hours worked 105.88 61.93 70.97%

Consumption 1,772.87 1,081.29 63.96%

Assets 21,826.64 16,632.15 31.23%

Table Notes. All variables are means expressed in annual terms. Mean earnings and hours worked

are computed up to age 64 (inclusive). The units of earnings, consumption, and assets are GBP.

Our interpretation of Table 10 is the following. First, comparison between columns

makes clear that ignoring measurement error in health would lead to substantially

underestimate the costs of bad health for all outcomes of interest. The difference is

especially noticeable in earnings, where accounting for measurement error more than

doubles the estimated earnings costs of bad health. Second, looking at the differences

in estimated parameters when we take into account measurement error and when we

ignore it, it is clear that most of the discrepancy in the costs of bad health comes from

differences in the persistence of health and the time costs of bad health. The way in

which underestimating the time cost of bad health biases the estimated lifetime costs of

bad health is clear. A lower estimated time cost of bad health translates into a smaller

increase in resources when moving everyone to the good health state. We expect this
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channel to be the first-order force behind the higher estimates for the costs of bad health

when taking into account measurement error.

In Table 11, we report the costs of bad health for individuals who are initially

unhealthy. Because health is persistent, the costs of bad health are higher for these

individuals than for the overall population. This is true both when taking into account

and when ignoring measurement error. To understand the differences between the

middle two columns, it is useful to keep in mind that the estimated persistence of health

is higher when taking into account measurement error. Moreover, the persistence of

health is the main driver of the higher costs of bad health for the initially unhealthy.19

This helps rationalizing why the costs of bad health for the initially unhealthy are

higher when we take into account measurement error than when we purposely ignore

it. Table 11 confirms this intuition.

Table 11: Pecuniary Lifetime Costs of Bad Health (individuals initially in bad health)

Outcome Taking into account ME Ignoring ME Difference (%)

Earnings 3,962.32 987.00 301.45%

Hours worked 432.84 127.37 239.83%

Consumption 3,821.79 1,618.09 136.19%

Assets 32,046.68 21,038.62 52.32%

Table Notes. All variables are means expressed in annual terms. Mean earnings and hours worked

are computed up to age 64 (inclusive). The units of earnings, consumption, and assets are GBP.

Overall, our exercise suggest that exercises like the ones in Capatina (2015) and

De Nardi, Pashchenko and Porapakkarm (2018) are likely to highly underestimate

the lifetime costs of bad health.

7 Conclusion

In this paper, we estimate a structural model of savings and labor supply with health

risk under two different assumptions on the observability of health. The first assump-

tion, which is prevalent in much of the literature, is that health is perfectly observable

(see, for instance, Capatina, 2015; De Nardi et al., 2018; French and Jones, 2011). The

19If health was i.i.d., the expected time that an initially healthy and an initially unhealthy individual

would spend in the bad health state would be more similar than when health is persistent.
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second assumption is that while health is not observable, a battery of noisy measures

of health can be observed.

Estimating the structural model under the two different assumptions on the observ-

ability of health enables us to assess the impact of measurement error in the costs of bad

health. We measure the costs of bad health using a battery of outcomes, such as labor

earnings, hours worked, consumption, and assets. Our main finding is that ignoring

measurement error in health leads to considerably underestimating the costs of bad

health, especially for those who are initially unhealthy. More specifically, our exercise

reveals that not taking into account measurement error could lead to underestimating

the costs of bad health by as much as 300%. Not taking into account measurement error

in health leads to underestimating the costs of bad health because doing so results in

both lower estimated time costs of bad health and lower persistence of health.

Our paper suggests that exercises that try to measure how health contributes to life-

time inequality in income and wealth, such as De Nardi, Pashchenko and Porapakkarm

(2018), are likely to highly underestimate the importance of health. Thus, a key message

from our paper is that researchers seeking to address the costs of bad health using

structural life-cycle models should take measurement error in health seriously.
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Appendices

A Identification of the Measurement-Error Model for Health

In this Appendix we provide two identification results for the measurement-error model

for health. Both of these results show identification of a non-stationary Markov model

with attrition (due to mortality) and refreshment samples. The difference between the

two results lies in the set of sufficient conditions needed for identification. The reason

why we provide two identification results is because there exist situations in which the

researcher cannot establish identification with one result but could do so with the other.

A.1 Identification with Mortality

In this appendix, we show that the stochastic process for health, and the relation be-

tween the observable health measures and the unobservable health state are identified.

Identification is complicated by the fact that individuals can die during the sample

period, and also enter the sample at different ages. To make more transparent the

identification challenge we face, we are going to distinguish in this section between t

(the ELSA wave) and age a. Note that this distinction is not relevant in the model, since

we are only modelling a cohort. However, this distinction is relevant for the estimation

and identification of the health process, since we are using data from different cohorts.

Assume that mortality from age a to age a+ 1 is perfectly observable. Let the number

of ages the model is composed of be A and the number of sample periods be T .20 Let

T < A (that is, using only people that enters the sample at each a= 0 and at time t= 0

will not be enough for identification). For simplicity, we discuss the case in which there

are three underlying health states: Bad Health, Good Health, and Death. That is,

Hiat ∈ {1,2,3}.

The underlying health state H is indexed by individual (i), age (a), and sample period

(t). Let a0i be the age at which individual i enters our sample. We have that

P(Hi,a0i ,t
= 3) = 0.

That is, individuals cannot enter the sample when they are already death.

20In our particular application, T corresponds to the number of waves that we use from ELSA.

33



As we said before, we observe three noisy measures Ym of the underlying state

(self-reported pain, number of mobility conditions and total number of ADL and IADL

conditions). Each noisy measure can take κm+1 values; that is, Ym ∈ {1,2, . . . ,κm,κm+1}.

The first κm values of Ym are the different values that the noisy measure of health Ym

can take, while the last value tells us if the individual is dead. That is, if an individual

is alive, Ym = κm+ 1 with probability zero.

Let the m-th emission matrix be given by Qm, where:

Qm =

Pm 0
κm×1

0 1

 .
As in the body of the text, the emission matrix for measure m while the individual is

alive is given by:

Pm =
(
pm1 , pm2

)
.

where pmc is a vector that contains the distribution of measure m given that H= c. Then

we can prove the following identification result:

Proposition 1 (Identification with mortality, refreshment samples, and T < A). Sup-

pose that for each m = 1,2,3, Pm is full column rank. Moreover, assume that for each age

πac > 0 for c= 1,2. Finally, assume that for each age a we can observe a subset of individuals

at a and a+ 1. Then, the measurement-error model for health is identified.

Proof. For each age awe can observe the distribution of Ym form= 1,2,3 conditional on

S , 3. Hence, the data at each age is generated by a finite mixture model with parameters

Pm, m= 1,2,3, and π̃ac, c= 1,2, where π̃ac =P(Ha = c|Ha , 3). Since {Pm}m=1,2,3 are full

rank and π̃ac > 0 for all a and c = 1,2, by application of Theorems 2–3 in Bonhomme

et al. (2016), it follows that Pm and π̃ac, c= 1,2, are identified.

Since Pm is identified for m = 1,2,3, Qm is identified (once we have Pm, we only

have to complete the matrix with known entries to get Qm).

Now, note that since we observe P(Yma ,Y
m ′
a+1|Ha , 3) for m,m ′ = 1,2,3, we can find

πa3 for each a according to:

π03 = 0, (we are interested in individuals that are alive at 0)

πa3 = πa−1,3+P(Ha = 3|Ha−1 , 3)(1−πa−1,3),
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where

P(Ha = 3|Ha−1 , 3) =P(Yma−1 , κm+ 1,Ym
′

a = κm+ 1|Ha−1 , 3).

From this, we can identify πa from π̃ac, c= 1,2, and πa3 as:

πa =
(
π̃a1(1−πa3), π̃a2(1−πa3),πa3

)
.

Finally, since we know Qm and πa, we can identify K as:

Ka = (Ω ′0aΩ0a)
−1Ω ′0aP(Y1a,Y1a+1)Ω

′
1a(Ω

′
1aΩ1a)

−1,

where Ωa0 = Q1Πa, Ωa1 = Π−1
a+1(Q1Πa+1)

′ and Πa = diagm(πa)
21. Finally notice that

P(Y1a,Y1a+1) can be recovered from:

P(Y1a,Y1a+1) =P(Y1a,Y1a+1|Ha , 3)︸                     ︷︷                     ︸
Observed

(1−πa3)+P(Y1a,Y1a+1|Ha = 3)︸                      ︷︷                      ︸
Known

πa3.

This completes the proof.

B Estimation of Parameters Outside the Model

In this Appendix, we explain the different estimation procedures for parameters that

are estimated outside the model.

B.1 Emission Matrices for Health and Transition Probabilities

The measurement-error model for health is the non-stationary hidden Markov model

described in sections 3 and 4.1.1.

The use of Maximum likelihood and the Baum–Welch algorithm to estimate this

model is challenging because of the joint presence of non-stationarities and refreshment

samples.22 Hence, we adapt and apply the two-step, constrained Baum–Welch algo-

rithm presented in García-Vázquez (2021). Adaptations are needed because of the need

to deal with mortality.

The two-step constrained Baum–Welch algorithm adapted to our application is:

Step 1.

21diagm(x) denotes a matrix that contains the vector x in its diagonal and 0’s outside of it.
22The Baum-Welch algorithm is a particular case of the EM algorithm, used in Maximum Likelihood

Estimation of Hidden Markov Models.
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(a) At each t= 1, . . . ,T restrict the sample to observations that are not missing or

death. Use Maximum Likelihood and the EM algorithm to get
√
N-consistent

and asymptotically-normal estimates of Pm and π̃t = (P(Ht = s|Ht , r +

1))s=1,...,r.

(b) For each t, calculate the proportion of people that dies between t and t+1 as:

prop deatht,t+1 = P̂(Y1t+1 = κ1+ 1|Y
1
t ,−7,κ1+ 1).

(c) Let

πHt,r+1
t+1 = (P(Ht+1 = s|Ht , r+ 1))s=1,...,r+1.

A consistent estimate of this object is given by:

π̂St,r+1t+1 =
(

ˆ̃πt+1(1−prop deatht,t+1),prop deatht,t+1
)
,

where ˆ̃πt+1 denotes the estimate for π̃t+1 from step 1.

Step 2. For each t= 1, . . . ,T−1 restrict the sample to observations at t and t+1 that

are non-missing in t and t+ 1 and non-death in t. Estimate Kt iterating between

the following two steps until convergence:

• E step: Given estimates for ˆ̃πt, π̂Ht,r+1
t+1 ,Q1 , {Y1i,τ}τ=t,t+1 and a guess for K(h)

t ,

obtain the filtered probabilities

v̂i,k,j :=P(Hi,t+1 = j,Hi,t = k|Y
1
i,t,Y

1
i,t+1, {π̂τ}τ=t,t+1, Q̂

1,Kht ).

These filtered probabilities can be calculated as follows:

v̂i,k,j =
Q̂1(y1i,t,k)π̂t(k)K

(h)(k,j)Q̂1(y1i,t+1, j)∑r
j=1

∑r
k=1 Q̂

1(y1i,t,k)π̂t(k)K
(h)(k,j)Q̂1(y1i,t+1, j)

.

• M step: Calculate the new guess K(h+1)
t as:

K
(h+1)
t = argmax

K

N∑
i=1

{ r∑
k=1

r∑
j=1

vikj log(K(k,j))
}

s.t.
r∑
j=1

Kt(k,j) = 1 for all k,

r∑
j=1

K(j,c) ˆ̃πt(j) = π̂Ht,r+1
t+1 (c).
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B.2 Spousal Income

We are interested in estimating E[yst|Ht = c] for c= 1, . . . , r. The identification challenge

here is that obviously St is not observed. In order to overcome this challenge, we need

the following exclusion restriction:

Assumption 1 (Exclusion Restriction). E[yst|Y
1
t ,Ht = c] =E[yst|Ht = c].

Assumption 1 says that the measurement error in Y1t does not predict spousal

income. In the absence of economically-driven measurement error, such as for example

justification bias, this is a reasonable assumption. Under this exclusion restriction, we

can write E[yst|Y
1
t = y] as:

E[yst|Y
1
t = y] =

r∑
c=1

E[yst|Ht = c]P(Ht = c|Y
1
t = y), y= 1, . . . ,κ.

This can be written as the following linear system:

P(Y1t )
−1P1ΠtE[yst|Ht] =E[yst|Y

1
t ],

where E[yst|Ht] is a column vector whose i-th element is given by E[yst|Ht = i] and

E[yst|Y
1
t ] is a column vector whose i-th element is given by E[yst|Y

1
t = i]. Moreover,

P(Y1t ) is a diagonal matrix that contains the cross-sectional distribution of Y1t at t in the

diagonal.

Note that the fact that all values of Y1t have positive probability implies that under the

full-column-rank assumption and Πt having non-zero diagonal elements (all needed for

the identification of the health process), parameters for spousal income are identified.

Estimating the parameters for spousal income can be done by using Minimum

Distance to impose in the sample the restrictions implied by the population model—

that is, the linear system seen above. Note that if Y1 is chosen to be such that its

cardinality is equal to r, estimation can simply be done by matrix inversion.

B.3 Wages

In the model, we assume that log wages are given by the sum of a deterministic

component (a quadratic polynomial in age, a coefficient for good health, and the

individual fixed effect) and a stochastic component (u). Hence,

log
(
wmodel
it

)
= a0+a1t+a2t+aH1{Healthit = Good}+ηi+uit. (5)
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The evolution of the stochastic component of wages follows an AR(1) process with

normally-distributed innovations whose variance differs in the first and in subsequent

periods. Formally,

uit = ρuit−1+ ξt, ρ ∈ (0,1), (6)

ξ1 ∼ N(0,σ2ξ,1),

ξt ∼ N(0,σ2ξ,t), ∀t > 1.

It is assumed that ηi ⊥ ξt for i= 1, . . . ,N, and t= 1, . . . ,T .

In the data, estimate, for a given health indicator, in the sub-sample of labor market

participants:

log
(
w̃data
it

)
= ã0+ ã1t+ ã2t

2+ ãH1{Healthit=Good}+ η̃i+ νit,︸︷︷︸
= uit+mit

(7)

where w̃data
it is the individual hourly wage (measured with error), ã0 is a constant term,

ã1 is the coefficient of age, ã2 is the coefficient of age squared, ãH is the coefficient

of good health, η̃i is the individual fixed effect, and νit is the error term. The error

term νit is the sum of the stochastic component of wages, uit, and serially-uncorrelated

measurement error, mit ∼ N(0,σ2m).

The parameters of the data generating process for the stochastic component of

wages and the fixed effects, (ρ,σ2ξ,1,σ
2
ξ,t,σ

2
m,σ

2
η), are estimated outside the model by

Minimum Distance. That is, we choose the parameter values that minimize the distance

between a vector of target statistics calculated in the data and a vector of their theoretical

counterparts.

At this point, it is worth mentioning that the estimated wage-shock parameters will

be biased due to the selection of workers in the labor market that was discussed in

section 4.3. Estimation of biased wage-shock parameters is common practice in the

literature.23,24 Despite the presence of bias, there are ways to know how large this bias is.

23French (2005) and O’Dea (2018) are just two examples of papers in the literature that estimate

wage-shock parameters with bias.
24The likely reason for this is that, in order to keep the second stage of the estimation procedure

tractable, wage-shock parameters must be estimated outside the model. Since there seems to be no

known procedure to estimate consistent wage profiles when the error term in the value of participating

enters non-linearly and is correlated with the error term in the wage equation, this leaves researchers

with the non-ideal solution of using contaminated wage profiles to form the residuals that are used to

estimate wage-shock parameters.
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For instance, if the bias in wage-profile parameters is large, then this means that there is

large bias in the residuals, which translates into large biases in wage-shock parameters.

An assessment of the bias in wage-profiles parameters is possible by comparing the

parameters estimated directly from the data with those estimated inside the model.

B.3.1 Identification of Wage Parameters

Let εit denote the residuals from the equation in levels (7), where

εit = ηi+uit+mit, t= 1, . . . ,T. (8)

Then note that we can find a general expression for uit as a function of parameters by

recursion:

ui1 = ρui0+ ξ1

= ξ1, (since ui0 = 0 by assumption)

ui2 = ρui1+ ξ2

= ρξ1+ ξ2,

ui3 = ρui2+ ξ3

= ρ(ρξ1+ ξ2)+ ξ3

= ρ2ξ1+ ρξ2+ ξ3,

...

uit =

t∑
τ=1

ρt−τξτ. (9)

Substituting for uit in equation (8), we have:

εit = ηi+mit+

t∑
τ=1

ρt−τξτ, t= 1, . . . ,T. (10)

We can use this expression for εit to calculate:

εi2− εi1 =mi2−mi1+ ρξ1+ ξ2− ξ1

=mi2−mi1+(ρ− 1)ξ1+ ξ2,

εi3− εi2 =mi3−mi2+ ρ
2ξ1+ ρξ2+ ξ1−(ρξ1+ ξ2)

=mi3−mi2+ ρ(ρ− 1)ξ1+(ρ− 1)ξ2,

εi4− εi2 =mi4−mi2+ ρ
3ξ1+ ρ

2ξ2+ ρξ3+ ξ4−(ρξ1+ ξ2)

=mi4−mi2+ ρ(ρ
2− 1)ξ1+(ρ2− 1)ξ2+ ρξ3+ ξ4.
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We can then obtain the expressions

Cov(εi4− εi2,εi1) = ρ(ρ2− 1)σ2ξ,1 = ρ(ρ− 1)(ρ+ 1)σ
2
ξ,1 (11)

and

Cov(εi3− εi2,εi1) = ρ(ρ− 1)σ2ξ,1, (12)

which, when combined, identify ρ:

1+ ρ=
Cov(εi4− εi2,εi1)
Cov(εi3− εi2,εi1)

.

Using the expression

Cov(εi4− εi2,εi1) = ρ(ρ2− 1)σ2ξ,1 (13)

we can back out σ2ξ,1. We can then use the expression

Cov(εi2− εi1,εi1) = (ρ− 1)σ2ξ,1−σ
2
m (14)

to obtain σ2m.

It remains to show that σ2ξ,t and σ2η are both identified. To do this, we first use the

expression

Var(εi2− εi1) = 2σ2m+(ρ− 1)2σ2ξ,1+σ
2
ξ,t, (15)

which gives us σ2ξ,t. We then use

Var(εi2) = ρ2σ2ξ,1+σ
2
m+σ2η+σ

2
ξ,t (16)

to obtain σ2η.

This proves that the parameters of the wage-shock process are identified when

T > 4.

B.3.2 Overidentifying Restrictions

To increase the precision of the estimation by Minimum Distance, we can target addi-

tional statistics of the wage-shock process. In principle, we could obtain the following
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additional statistics:

Var(εit) = σ2η+σ
2
m+ ρ2(t−1)σ2ξ,1+

t−1∑
τ=1

ρ2(τ−1)σ2ξ,t, t ∈ {1, . . . ,14} \ {2}, (17)

Cov(εit,εi1) = σ2η+ ρ
t−1σ2ξ,1, t ∈ {2, . . . ,14}, (18)

Cov(εit,εi2) = σ2η+ ρ
tσ2ξ,1+ ρ

t−2σ2ξ,t, t ∈ {3, . . . ,14}, (19)

Cov(εit,εi3) = σ2η+ ρ
t+1σ2ξ,1+ ρ

t−3(1+ ρ2)σ2ξ,t, t ∈ {4, . . . ,14}, (20)

Cov(εit+1,εit) = σ2η+ ρ
2t−1σ2ξ,1+ ρ

(
t−1∑
τ=1

ρ2(τ−1)

)
σ2ξ,t, t ∈ {4, . . . ,13}, (21)

Cov(εit+1− εit,εit) = ρt−1(ρ− 1)σ2ξ,1+
t−1∑
τ=1

ρ2(τ−1)(ρ− 1)σ2ξ,t−σ
2
m, t ∈ {2, . . . ,13}, (22)

Cov(εit+2− εit,εit) = ρ2(t−1)(ρ2− 1)σ2ξ,1+
t−1∑
τ=1

ρ2(τ−1)(ρ2− 1)σ2ξ,t−σ
2
m, t ∈ {1, . . . ,12},

(23)

Cov(εi3− εi2,εi3) = σ2m+ ρ3(ρ− 1)σ2ξ,1+ ρ(ρ− 1)σ
2
ξ,t, (24)

Cov(εi2− εi1,εi2) = σ2m+ ρ(ρ− 1)σ2ξ,1+σ
2
ξ,t. (25)

In total, these are 85 (= 2× 13+ 12+ 11+ 10+ 2× 12+ 2) statistics, which together with

the 5 identifying restrictions, make a total of 90 statistics. In practice, however, we can

only compute 81 statistics. This is due to the fact that age groups which cluster older

individuals do not have enough observations as to compute some covariances.25

B.3.3 Estimation of Wage Parameters by Minimum Distance

The Minimum Distance estimator is defined as:

θ̂n = argmin
θ∈Θ

Qn(θ, π̂n), (26)

where

Qn(θ, π̂n) =
1

n
ψ(θ, π̂n)

′Ŵψ(θ, π̂n) (27)

is the objective function, n is the number of data targets, θ ∈Θ is the vector of parameters

to be estimated, ψ(θ, π̂n) is a n× 1 vector that relates data targets π̂n to parameters, and

Ŵ is a n×n weighting matrix.

25The covariances that could not be computed are: Cov(εi11,εi1), Cov(εi12,εi1), Cov(εi13,εi1),

Cov(εi14,εi1), Cov(εi12,εi2), Cov(εi13,εi2), Cov(εi14,εi2), Cov(εi13,εi3), and Cov(εi14,εi3).
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We estimate wage parameters θ= (ρ,σ2η,σ
2
ξ,1,σ

2
ξ,t,σ

2
m) using 81 data targets, a 81× 81

identity matrix Ŵ , and a 81× 1 vector of moment conditions ψ(θ, π̂81) which exploits

the identifying and over-identifying restrictions derived in sections B.3.1 and B.3.2.

More specifically,

ψ(θ, π̂81) =


ψ1(θ, π̂81)

...

ψ81(θ, π̂81)

=


π̂81,1−h1(θ)

...

π̂81,81−h81(θ)

 ,
where π̂81 is the 81× 1 vector of data targets and h is a 81× 1 vector, which lists the

right-hand side of expressions (11)–(25).

C Imputation of Average Earnings

To impute average earnings for individuals in our sample, we use data from the

simulated model of O’Dea (2018). The implicit assumption here is that our cohort

(1950–1957) is similar to his (1935–1950). The reason why we focus on individuals born

between 1950 and 1957 rather than in any other cohort is that these are the individuals

that we can observe in ELSA at age 50–51 and, thus, the set of individuals for which we

can recover initial distributions with health indicators.

The imputation procedure is as follows. We first run the following regressions in

the data simulated by O’Dea for each household type j= 1,2,3,4:26

aeji,64 = β
j
0

(
1− 1{

pbb
j
i,65>29.13k

})pbbji,65+βj11{pbbji,65>29.13k}
+βj21{pbbji,65>29.13k}privbenji,65+ εji, (28)

where aeji,64 are the average earnings of individual i and type j at age 64, 1{
pbb

j
i,65>29.13k

}
is an indicator function which takes the value one if the public pension benefits of

individual i, measured at the household-level, are greater than or equal to 29,130GBP,

privben
j
i,65 are the private pension benefits of the individual, and εji is white noise.

Estimation of these regressions provides us with OLS estimates of the parameters{
β̂
j
0, β̂

j
1, β̂

j
2

}
j
. We use these estimates, together with a similar household classification,

26O’Dea (2018) classifies households in four different types, attending to education (low or high) and

whether they have access to a defined-benefit pension scheme. O’Dea considers an individual to be

highly educated if he/she continued to pursue education passed age 15, the compulsory schooling age

for his cohort.
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to generate average earnings at age 64 according to equation (28) for the individuals in

our sample.

Next, we recover average earnings at age 50. This is relatively an easy task since we

can construct employment spells from the moment individuals enter the labor market

up to the last year in which they are observed in ELSA.27 Having the full history of

employment spells, average earnings at age 64, and the cumulative sum of labor income

during the years an individual is observed in ELSA, it is straightforward to back out

average earnings at age 50 from the following identity:

aeji,64 =
Emp yearsji,50 · aeji,50

Emp yearsji,50+ELSA emp yearsji
+

Earnings ELSAj
i

Emp yearsji,50+ELSA emp yearsji
, ∀i, j,

(29)

where Emp yearsji,50 is the number of employment years for individual i at age 50,

ELSA emp yearsji is the number of employment years the individual has been employed

while observed in ELSA, and Earnings ELSAj
i is the cumulative sum of labor income

while the individual is observed in ELSA.

D Identifying and Estimating Initial Distribution of States

D.1 Assumptions and Identification

Finding the initial distribution of states to initialize the model is not straightforward

given that health is measured with error. In order to deal with this complication, we

make the following assumptions:

1. The initial wage shock is independent of the rest of states (loga0, logae0,H0).

2. (loga0, logae0) follow some known parametric distribution given true health: loga0

logae0

 ∼ F(·, ·;θH).

where θH is the vector of parameters on which the joint distribution of initial assets and

average earnings, given health H, depends.

27To construct employment spells for time periods prior to the ELSA survey period, we leverage on

the data collected in the ELSA Life History Interview, which asks individuals for “start” and “end” dates

for each job they have had since they entered the labor market until ELSA wave 3.
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Under these assumptions, we can identify the initial distribution of the states from

data on wages, health measures, average earnings, and non-housing wealth at age 50.

A few comments on identification are in order. First, the variance of the initial wage

shock is identified from the identification proof outlined before, and can be estimated

using the Minimum Distance procedure described in Appendix B.3.2. Second, the

conditional distribution of initial average earnings and initial wealth is identified from

data on health measures, average earnings, and health measures. To see why, note that

the random vector composed by average earnings and wealth is independent of noisy

health measures given true health. Then, from Bonhomme et al. (2016), its conditional

distribution, given health, is non-parametrically identified. It follows that under the

stronger parametric assumption of joint log-normality it is also identified. Finally, the

marginal distribution of health is identified (see Appendix A).

D.2 Parametric Assumptions

We make the following parametric assumptions:

1. loga0|H= 1 ∼ N(µa,1,σa,1).

2. loga0|H = 2 ∼ ALD(µa,2,σa,2,pa,2), where ALD() denotes the assymetric Laplace

distribution proposed by Yu and Zhang (2005).

3. logae0|H= h ∼ N(µae,h,σae,h) for h= 1,2.

4. The joint dependence of loga0 and logae0 given H = h is given by a Gaussian

Copula with rank-correlation parameter ρh.

D.3 Estimation Algorithm

In order to estimate the parameters of the joint distribution of initial assets and average

earnings we use a two-step procedure. In the first step, we estimate separately the

parameters of the marginal distribution of assets given true health and those of the

marginal distribution of average earnings, also given true health. In the second step,

we estimate the parameters of the copula given true health using the parameters of the

marginals as inputs.

This idea of estimating separately parameters of the marginals and parameters of

the copula is not new in statistics. In particular, the Inference-Functions-for-Margins
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(see Joe, 1997) and the Maximization-by-Parts algorithms (see Song et al., 2005) make

use of this idea. However, the algorithm used here is not a particular case of any of

those two algorithms because we are estimating the marginal distribution of log-assets

and log-average earnings conditional on an unobserved variable (health).

D.3.1 Estimating the Marginal of Assets given Health

Let fa,H(loga0;θa,H) be the density of assets given that health is H. Given our previous

assumptions, fa,1(loga0;θa,1), where θa,1 = (µa,1σa,1), is the density of a normal with

mean µa,1 and variance σa,1. Similarly, fa,2(loga0;θa,2) is the distribution of initial

log-assets given H= 2. Moreover, θa,2 = (µa,2,σa,2,pa,2) and fa,2(loga0;θa,2) is given by:

fa,2(loga0;θa,2) =
pa,2(1−pa,2)

σa,2
exp

(
−

loga0−µa,2
σa,2

[pa,2− 1(loga0 6 µa,2)]
)
.

We estimate θa,1 and θa,2 by Maximum Likelihood. In order to find the maximum

likelihood estimates, we use the following EM procedure:

• E step: Given guesses θ(l)a,1,θ
(l)
a,2 calculate the filtered probabilities:

τ̂1i =P(Hi = 1|ai0, {Y
m
i }3m=1) =

π̂0(1)fa,1(ai0;θ
(l)
a,1)P̂

1(y1i ,1)P̂
2(y2i ,1)P̂

3(y3i ,1)

Denominatori
,

where:

Denominatori = π̂0(1)fa,1(ai0;θ
(l)
a,1)P̂

1(y1i ,1)P̂
2(y2i ,1)P̂

3(y3i ,1)

+ π̂0(2)fa,2(ai0;θ
(l)
a,2)P̂

1(y1i ,2)P̂
2(y2i ,2)P̂

3(y3i ,2).

• M step: Given the distributional assumptions, θa,1 and θa,2 are updated differ-

ently.

1. In good health, the updated parameter values are simply the weighted mean

and variance of log-assets, where the weight of individual i is given by τ̂ii:

µ
(l+1)
a,1 =

∑N
i=1 τ̂

1
i logai,0∑N
i=1 τ̂

1
i

,

σ
(l+1)
a,1 =

∑N
i=1 τ̂

1
i (logai,0−µ

(l+1)
a,1 )2∑N

i=1 .τ̂
1
i

.
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2. Let ρp(t) = t(p− 1(t < 0)). Find θ(l+1)a,2 . Then, given an arbitrary initial guess

for pa,2, call it p(0), find θ(l+1)a,2 iterating on the following equations:

µr+1 = argmin
µ

∑N
i=1 τ̂

2
iρpr(logai,0−µ)∑N

i=1 τ̂
2
i

,

σr =

∑N
i=1 τ̂

2
iρpr(loga0−µr+1)∑N

i=1 τ̂
2
i

,

pr+1 =
a+

√
a2−(x−µr)

x−µr
,

where

x=

∑N
i=1 τ̂

2
i logai,0∑N
i=1 τ̂

2
i

and a=

∑N
i=1(logai,0−µr)1(logai,0 6 µr)∑N

i=1 τ̂
2
i

.

Note that this is just a weighted version of the algorithm described in Yu and

Zhang (2005), where the weights are given by the τ̂2i .

D.3.2 Estimating the Marginal of Average Earnings given Health

Let fae,H(logae0,θae,H) be the density of log-average earnings given that health is H.

Given our previous assumptions, fae,H(logae0,θae,H), where θae,H = (µae,H,σae,H), is the

density of a normal with mean µae,H and variance σae,H. Just as in the case of assets,

we estimate the parameters of the marginal of log-average earnings given health using

Maximum Likelihood. In order to find the maximum likelihood estimates, we use the

following EM procedure:

• E step: Given guesses θ(l)ae,1,θ
(l)
ae,2 calculate the filtered probabilities:

τ̂1i =P(Hi = 1|aei0, {Y
m
i }3m=1) =

π̂0(1)fae,1(aei0;θ
(l)
ae,1)P̂

1(y1i ,1)P̂
2(y2i ,1)P̂

3(y3i ,1)

Denominatori
,

where:

Denominatori = π̂0(1)fae,1(aei0;θ
(l)
ae,1)P̂

1(y1i ,1)P̂
2(y2i ,1)P̂

3(y3i ,1)

+ π̂0(2)fae,2(aei0;θ
(l)
ae,2)P̂

1(y1i ,2)P̂
2(y2i ,2)P̂

3(y3i ,2).

• M-step The updated parameter values are simply the weighted mean and vari-

ance of log-assets, where the weight of individual i is given by τ̂ii:

µ
(l+1)
ae,1 =

∑N
i=1 τ̂

1
i logaei,0∑N
i=1 τ̂

1
i

,

σ
(l+1)
ae,1 =

∑N
i=1 τ̂

1
i (logaei,0−µ

(l+1)
ae,1 )2∑N

i=1 .τ̂
1
i

.
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D.3.3 Estimating the Copula Parameters for Good and Bad Health

In this step of the algorithm, we maximize the log-likelihood of the dataset:

{
{Ymi }3m=1, logai,0, logaei,0

}N
i=1
.

In doing so, we take as given the estimated parameters for the joint distribution of health

and health measurements, (π0, {Pm}3m=1), and the parameters of the marginal distribu-

tions of initial log-assets and initial log-average earnings given health, {θa,H,θae,H}H=1,2.

Hence, the only parameters that remain to be estimated at this stage are the rank-

correlation parameters of the (Gaussian) copula for log-assets and log-average earnings

given health; that is, ρH for H = 1,2. In order to maximize the log-likelihood with

respect to these parameters we use the following EM algorithm:

• E step: Given guesses for the rank-correlation parameters ρ(l)H , H= 1,2, calculate

the filtered probabilities:

τ1i =P(Hi = 1|ai,0,aei,0, {Yi}
3
m=1)

= π̂0(1)P̂
1(y1i ,1)P̂

2(y2i ,1)P̂
3(y3i ,1)

× c(Fa,1(logai; θ̂a,1),Fae,1(logaei; θ̂ae,1))fa,1(logai; θ̂a,1)fae,1(logaei; θ̂ae,1)/denominatori,

where

denominatori = π̂0(1)P̂1(y1i ,1)P̂
2(y2i ,1)P̂

3(y3i ,1)

× c(Fa,1(logai; θ̂a,1),Fae,1(logaei; θ̂ae,1))fa,1(logai; θ̂a,1)fae,1(logaei; θ̂ae,1)

+ π̂0(2)P̂
1(y1i ,2)P̂

2(y2i ,2)P̂
3(y3i ,2)

× c(Fa,2(logai; θ̂a,2),Fae,2(logaei; θ̂ae,2))fa,2(logai; θ̂a,2)fae,2(logaei; θ̂ae,2).

Here, c() denotes the density function associated to the Gaussian Copula, and

Fa,H(·; ·) and Fae,H(·; ·) denote the cdf of log-assets and log-average earnings when

true health is H.

• M step: In this step we are seeking to maximize the expected completed log-

likelihood given the data with respect to the rank-correlation parameters (ρ1,ρ2).

Because of the gaussianity of the copula, solving the score equation of this ex-

pected log-likelihood amounts to solving the following pair of cubic equations

(see, for example, Amengual and Sentana, 2015):

ρ3H−BHρ
2
H+(AH− 1)ρH−BH = 0,
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where

AH =

∑N
i=1 τ

H
i Z

a,H
i Zae,Hi∑N

i=1 τ
H
i

,

BH =

∑N
i=1 τ

H
i

(
(Za,Hi )2+(Zae,Hi )2

)∑N
i=1 τ

H
i

,

and

Za,Hi =Φ−1(Fa,H(loga)),

Zae,Hi =Φ−1(Fae,H(logae)),

for H = 1,2. Since these equations can have up to three real roots, we solve

for all of them numerically and pick the one that yields the highest expected

complete log-likelihood. The resulting pair of solutions gives us the new guess(
ρ
(l+1)
1 ,ρ

(l+1)
2

)
.

E Computational Appendix

The model is solved by iterating the value function backwards. More concretely, the

right-hand side of the functional equation (30) at each t has to be maximized choosing

over consumption and hours worked:

Vt(H,a,ae,η) = max
a ′,N

u
(
c, L−φP1{N>0}−N−φH1{H=Bad}

)
+(1− s(H,t))b(a ′) (30)

+βs(H,t)EVt+1(·,a ′,ae, ·)

s.t c+a ′ = y(rat+wtNt)+ys(t,H)+ trt+a(1+ r) (31)

E.1 Discretizing States

We use equally-spaced grids for the continuous states, assets, average earnings, and the

wage shock. Then we solve the RHS of the value function for each state on the grid and

each t.

E.2 Solving the right-hand side of the value function

In order to solve the right-hand side of the value function, we proceed as follows:

1. We focus on the share of consumption and the share of hours worked as a fraction

of total resources and total available hours, respectively. We create a grid between
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0 and 1 for each of these choices, and we evaluate the right-hand side of the value

function (30) at each of these choices.

2. If the choice today implies an state tomorrow that is outside of the grid for the

states, we use linear interpolation to evaluate the expected value function at t+ 1.

3. Once we have evaluated the right-hand side of the functional equation on each

point of the choice grid, we approximate the right-hand side outside the grid as

the linear interpolant of the right-hand side of the value function on the grid.

4. We maximize this object using a global optimization strategy.

E.3 Global Optimization Strategy

In order to maximize the interpolated right-hand side of the functional equation, we

start by sampling pseudo-random shares of consumption and hours worked using

Sobol sequences. At each point of the Sobol sequence we search for a local maximum

using a Nelder–Mead algorithm. Since this only finds interior local maxima, we deal

with the corners separately.

F Details on Estimation by Indirect Inference

In this appendix, we provide more details on the indirect inference estimation proce-

dure.

F.1 Weighting matrix

The weighting matrix is given by a diagonal matrix that contains the inverse of the

squares of the targets calculated in the data. More precisely, let ψin be the i-th target

calculated in the data. Then, our weighting matrix is given by:

WN =


1
ψ2
1n

. . .

1
ψ2
Jn

 ,
where J is the total number of targets, which is equal to:

J= 6 ∗ T + 4.
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This number of targets comes from the fact that we are targeting assets, participation

and hours for the healthy and the unhealthy (hence the 6) for T age groups (hence the

term T ) and 4 regression coefficients corresponding to the deterministic wage profiles

(hence the +4 term).

F.2 Minimizing the Indirect Inference Objective

We use a heuristic global minimization algorithm to minimize the the indirect inference

objective. Our minimization procedure consists of three steps:

1. In the first step, we take 10,000 elements from a Sobol sequence defined over the

parameter space. We burn-in the first 9,000 and keep the remaining 1,000. We

evaluate the value of the indirect inference objective at these 1,000 candidates in

parallel across 4 processes.

2. From this initial Sobol search, we take the 24 best candidates (in terms of accom-

plishing a small objective). Let the j-th candidate be denoted by θ(j), and let θ(j)i
denote the i-th coordinate of θ(j). Using these 24 candidates, we define a box of

the form:
12×
i=1

[
min
j
θ
(j)
i ,max

j
θ
(j)
i

]
.

Following a similar procedure as before, we take 10,000 parameter values from

a Sobol sequence defined inside this box, burn-in the first 9,000, and keep the

remaining 1,000. Again, we evaluate the objective at these 1,000 candidates in

parallel across four processes.

3. The last step of the procedure is a polishing step. We take the 4 best candidates

from the Sobol search in step 2 and initialize a local minimization step of the

indirect inference objective in each of them. The minimization algorithm that we

use to conduct the local minimization step is the BOBYQA algotithm proposed by

Powell (2009). Again, each of these local searches are conducted in parallel across

four processes. Finally, our global minimizer is the one corresponding to the best

local minimum from these four local searches.
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